线形腔半导体可饱和吸收镜被动锁模掺镱 光纤激光器

宋 锐¹ 侯 静¹* 王彦斌² 靳爱军¹ 陆启生¹ (¹国防科学技术大学光电科学与工程学院,湖南长沙 410073 ²中国人民解放军 63892 部队,河南 洛阳 471003

摘要 皮秒脉冲在超连续谱光源中具有重要应用,基于线形腔搭建了半导体可饱和吸收镜(SESAM)被动锁模皮 秒脉冲掺镱光纤激光器,详细分析对比了激光器中所用光纤光栅的反射率、反射带宽以及 SESAM 的宏观特性参 数对锁模激光器输出脉冲特性的影响。实验结果表明:选择 10%反射率和 0.3 nm 反射带宽的光纤光栅比较有利 于激光器的稳定锁模;光纤激光器对 SESAM 参数的适用范围比较大,SESAM 的非饱和损耗对激光器输出平均功 率影响较大,SESAM 的非饱和损耗越小,激光器输出脉冲的平均功率越高。

关键词 激光器;光纤激光器;被动锁模;半导体可饱和吸收镜;光纤光栅 中图分类号 TN248 **文献标识码** A **doi**: 10.3788/CJL201441.0102007

Ytterbium-Doped Fiber Laser Passively Mode-Locked by a Semiconductor Saturable Absorber Mirror in Linear Cavity

Song Rui¹ Hou Jing¹ Wang Yanbin² Jin Aijun¹ Lu Qisheng¹

 $^{1}\ College\ of\ Optoelectronic\ Science\ and\ Engineering\ ,\ National\ University\ of\ Defense\ Technology\ ,$

Changsha, Hunan 410073, China

² Unit 63892 of People's Liberation Army, Luoyang, Henan 471003, China

Abstract Picosecond pulses have an important application in supercontinuum sources. A picosecond ytterbium-doped fiber laser passively mode-locked by an semiconductor saturable absorber mirror (SESAM) in linear cavity is constructed, and the effects of the reflectivity as well as the bandwidth of the fiber Bragg grating and the parameters of the SESAM on the characteristics of the output pulse are analyzed in detail and compared with each other. The experimental results show that a fiber Bragg grating with 10% reflectivity and 0.3 nm reflection bandwidth is more profitable for the mode-locking stability of the fiber laser, and the fiber laser has a wide working range for the parameters of the SESAM. In addition, the non-saturable loss of the SESAM has an important influence on the average output power of the fiber laser, and a smaller value of non-saturable loss results in higher output power for the laser.

Key words lasers; fiber lasers; passively mode-locking; semiconductor saturable absorber mirror; fiber Bragg grating

OCIS codes 140.3510; 140.4050; 140.3615

1 引 言

半导体可饱和吸收镜(SESAM)是利用分子束外 延技术开发出来的一种基于半导体吸收漂白特性的 新型锁模器件,1992年由当时在美国 AT&T Bell 实 验室的 Keller 等^[1]首次提出,该器件改变了以前其他 可饱和吸收体很难实现激光器连续波锁模的状况,具 有重要的历史意义^[2]。SESAM 先后被应用于固体激 光器和光纤激光器^[3]。SESAM 被动锁模激光器可以

基金项目:国家自然科学基金(61077076)、湖南省杰出青年基金项目(12JJ1010)、湖南省研究生科研创新项目、国防科技 大学优秀研究生创新资助(B120701)

作者简介: 宋 锐(1985—),男,博士,讲师,主要从事光纤激光及光子晶体光纤方面的研究。E-mail: srnotice@163.com * 通信联系人。E-mail: houjing25@sina.com

收稿日期: 2013-07-20; 收到修改稿日期: 2013-08-18

输出纳秒至飞秒量级的脉冲,对应的重复频率可以从 几百千赫兹至几十兆赫兹,对应的工作波长为1~ 2μm^[4-11]。目前,SESAM是技术最为成熟、商业应 用最为广泛的被动锁模器件之一。

SESAM 被动锁模激光器有环形腔和线形腔两种,环形腔 SESAM 被动锁模激光器的腔长通常较长,激光器的输出脉冲重复频率较低,脉冲宽度较宽,一般为亚纳秒量级,但是输出脉冲宽度受腔长、偏振态以及抽运功率等因素的影响。线形腔 SESAM 被动锁模激光器的腔长较短,激光器的输出脉冲受偏振态影响较小,重复频率相对较高,为兆赫兹量级,脉冲宽度较窄,一般为皮秒量级,在全光纤超连续谱光源系统中具有广泛应用。

本文基于线形腔搭建了 SESAM 被动锁模皮秒 脉冲光纤激光器,依次对比研究了激光器中所用光 纤光栅的反射率、反射带宽以及 SESAM 的几项宏 观特性参数(如调制深度、饱和通量以及非饱和损耗 等)对锁模激光器输出脉冲特性的影响,为进一步优 化腔体结构提供了参考。

2 光纤光栅反射率对 SESAM 锁模激 光器输出脉冲特性的影响

线形腔皮秒脉冲激光器的实验原理如图 1 所 示。图中 SESAM(Batop, SAM-1064-40-500 fs)的 调制深度、饱和通量以及恢复时间分别为 30%、 30 μJ/cm²和 500 fs。30 cm 长的高浓度掺杂单模掺 镱光纤(Liekki)在 976 nm 处的吸收系数为 1200 dB·m⁻¹,最大输出功率为480 mW、中心波长 为 976 nm 的半导体激光器作为抽运源并通过波分 复用器耦合进入到谐振腔内。为了减小光纤光栅长 度不一致对激光器输出脉冲特性的影响,谐振腔的 腔长相对较长,大约为4m。光纤光栅的输出端连 接隔离器,消除输出端面反射回光对激光器锁模稳 定性的影响。1×3类型耦合器的输出耦合比为 1:1:98,其中 98%的端口作为功率输出端,两个 1% 的输出端口分别连接示波器(Tektronix, TDS7154) 和光谱仪(Agilent,86142B-E02),用来观察激光器 的时域和频域输出。

图 1 线形腔 SESAM 被动锁模皮秒脉冲光纤激光器原理图 Fig. 1 Schematic diagram of the picosecond fiber laser passively mode-locked by an SESAM in linear cavity

依次把反射率分别为 10%、40%、80% 的三种 光纤光栅连入激光器内,三种光纤光栅的中心波长 与反射带宽均相同,分别为 1064 nm 和 0.3 nm。表 1~3 分别给出了三种光纤光栅对应激光器输出脉 冲的平均功率。通过对比可知,随着光纤光栅反射 率的减小,SESAM 实现稳定连续波锁模时对应 976 nm抽运源的工作电流范围越来越大,对应激光 器输出脉冲的平均功率也越来越高。这是因为光纤 光栅的反射率越大,在相同抽运功率下激光器内脉 冲的平均功率越高,由于脉冲的重复频率基本相同, 所以单脉冲能量随着脉冲平均功率的增加逐渐提高,脉冲对 SESAM 的漂白能力也越来越强。入射 到 SESAM 表面上的脉冲能量为 SESAM 饱和通量 的 3~5 倍时激光器能够实现稳定的连续波锁模,脉 冲能量过大会导致激光器谐波锁模,脉冲能量过小 则会导致激光器处于调 Q 状态。所以光纤光栅的 反射率越高,SESAM 锁模激光器能够稳定工作时 对应976 nm抽运源的工作电流范围越窄,输出脉冲 的平均功率越低。

表 1 光纤光栅反射率为 80%时对应 SESAM 锁模激光器的输出功率 Table 1 Output powers of the SEMAM mode-locked laser when the reflectivity of the FBG is 80%

Working current /mA	140	145	150	155	160
Output power /mW	0.69	0.78	0.89	0.98	1.05

Table 2 Output powers of the SEMAM mode-locked laser when the reflectivity of the FBG is 10% Working current /mA 140 145 150 160 165 170 Qutput power /mW 2.0 2.0 2.6 2.5 155 160 165 170 Ka3 £ft XHIQH xA 10% left Add xSESAM @R&2EM@h@add x3x Table 3 Output power of the SEMAM mode-locked laser when the reflectivity of the FBG is 10% Working current /mA 195 200 205 210 215 220 225 230 238 240 245 Output power /mW 4.24 4.81 5.35 5.81 6.31 6.78 7.28 7.74 8.22 8.70 9.30 B2 GR T 三种尤纤光栅 KH KH #E SESAM @2 T ft BEtK ho 变 the TI da @2 H ad (the the the reflectivity of the FBG is 10% Colstant ft Colstant ft FBT ad (the the the the the reflectivity of the FBG is 10% Werking KB * M 20 M 20 Ad (the the the the fibre the the fibre the the fibre the the the the the the the the the th		表	2 光纤光	七栅反射率	为40%时	对应 SE	SAM 锁模	激光器的	的输出功率			
Working current /mA 140 145 150 155 160 165 170 Output power /mW 2.0 2.30 2.69 2.97 3.32 3.76 4.20 Fable 3 Output powers of the SEMAM mode-locked laser when the reflectivity of the FBG is 10% Working current /mA 195 200 205 210 215 220 225 230 235 240 245 Output power /mW 4.24 4.81 5.35 5.81 6.31 6.77 7.26 7.74 8.22 8.70 9.30 M2 2 显示了三种光纤光硼在SESAM 稳定工作 The Kei M cols 2 Mark Much and Wage A mon at guark A	Table 2	Output	powers of	the SEM	AM mode-	locked l	aser when	the refle	ectivity of t	he FBG is	40%	
Output power /nW 2.0 2.30 2.69 2.97 3.32 3.76 4.20 $k3$ % £f % fll (2 gl + 5 10 % left did SESAM is degit 2 flowing the reflectivity of the FEG is 10 % Table 3 Output powers of the SEMAM mode-locked laser when the reflectivity of the FEG is 10 % Working current /nA 195 200 205 210 215 220 225 230 235 240 245 Output power /mW 4.24 4.81 5.35 5.81 6.31 6.78 7.26 7.74 8.22 8.70 9.30 R1 2 Gave 7 = #P.267 % flex 2 mb 25 K flex dia bits #RE King & Cu (1) & Sing # 2 mb 25 K flex dia bits #RE King & Cu (1) & Sing # 2 mb 25 K flex dia bits 27.4 4.27.6 MHz, B1 2 (2.4) (C) (C) (Q) (Q) (Q) (Q) (Q) (Q) (Q) (Q) (Q) (Q	Working current /n	nA	140	145	-	150	155		160	165		170
F3 #2##Edd Straft wide SESAM @dd & 2#896 #.nb#Table 3. Output powers of the SEMAM mode locked laser when the relectivity of the FBG is 10% $\overline{Vorking current /mA}$ 195200205210215220230230240245Based of the SEMAM @dd StartBased of the Semamu and the second with the sec	Output power /m	N	2.0	2.30	2	.69	2.97		3.32	3.76		4.20
Table 3 Output powers of the SEMAM mode-locked laser when the reflectivity of the FBG is 10% Working current /mA 195 200 205 210 215 220 225 230 235 240 245 Output power /mW 4.24 4.81 5.35 5.81 6.31 6.78 7.26 7.74 8.22 8.70 9.30 B 2 显示 7 三种光纤光栅在 SESAM 包定 T 器腔长的变化可以忽略不H. 二种光纤光栅稳定 T 作时对应激光器输出脉冲的重复频学分别为 27.2 27.4 2.7.4 2.8.2 8.70 9.30 Que power /mW 4.24 4.81 5.35 6.81 0.70 9.30 27.4 2.7.4 8.70 9.30 Que power /mW 4.26 A 82 x 896 80 x 14 Reference Power /max Power /m		表	3 光纤光	出栅反射率	为10%时	对应 SE	SAM 锁模	激光器的	的输出功率			
Working current /mA 195 200 205 210 215 220 225 230 235 240 245 Output power /mW 4.24 4.81 5.35 5.81 6.31 6.78 7.26 7.74 8.22 8.70 9.30 B2 显示了三种光纤光栅在 SESAM 稳定工作 器腔长的变化可以忽略不计. 三种光纤光栅稳定工 常能长的变化可以忽略不计. 三种光纤光栅稳定工 giotophydapsydain. n = 激光器的腔长相对 77.4 8.22 8.70 9.30 giotophydapsydain. n = 数光器的腔长相对 77.4 8.22 8.70 9.30 giotophydapsydain. n = 数光器的腔长相对 78.25 7.60 7.74 8.22 8.70 9.30 giotophydapsydain. n = 39.25 7.40 8.25 8.70 9.30 7.74 8.22 8.70 9.30 giotophydapsydain. n = 39.25 7.40 8.22 8.70 9.30 7.74 8.22 8.70 9.30 giotophydapsydain. n = 39.25 7.60 7.60 7.60 7.60 7.74 8.22 8.70 9.30 giotophydapsydain. n = 39.25 7.60	Table 3	Output	powers of	the SEM	AM mode-	locked l	aser when	the refle	ectivity of t	he FBG is	10%	
Output power /mW 4.24 4.81 5.35 5.81 6.31 6.78 7.26 7.74 8.22 8.70 9.30 图 2 显示了三种光纤光棚在 SESAM 稳定工作 时对应的时级和频城输出、由于激光器的膨长相对 较长,光纤光栅长度不一致和多次熔接造成的激光 器腔长的变化可以忽略不计、三种光纤光栅稳定工 件时对应激光器输出脉中的重复频率分别为 27.2 2 4.24 4.81 5.35 6.31 6.78 7.26 7.74 8.22 8.70 9.30 國 2 显示了三种光纤光栅在 医不一致和多次熔接造成的激光 27.4 27.4 27.6 7.44 8.22 8.70 9.30 00.06 0.04 0.02 0 100 1	Working current /mA	195	200	205	210	215	220	225	230	235	240	245
图 2 显示了三种光纤光栅在 SESAM 稳定工作 时对应的时域和频域输出,由于激光器的腔长相对 较长,光纤光栅长度不一变和多次熔接造成的激光 $\frac{0000}{000} \frac{0000}{000} 000$	Output power $/mW$	4.24	4.81	5.35	5.81	6.31	6.78	7.26	7.74	8.22	8.70	9.30
时对应的时域和频域输出,由于激光器的腔长相对 按长、光纤光栅长度不一致和多次熔接造成的激光 $(10^{90} 0.04^{-0.02} - 0.04^{-0$	图 2 显示了三	种光纤	光栅在 S	SESAM 積	急定工作	器	腔长的变	化可じ	忽略不计	十。三种之	光纤光	栅稳定エ
较长,光纤光栅长度不一致和多次熔接造成的激光 10^{00}	时对应的时域和频	域输出	,由于激	光器的肋	空长相对	作	时对应激	化器输	〕 出脉冲的	的重复频	率分别	为 27.2
$\left(\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	较长,光纤光栅长周	度不一到	女和多次	熔接造质	 	27	. 4, 27.6	MHz。	图 2(a)、	(c) (e)	分别为	三种光纤
$\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $			(a) $R = 80$)%		-3	(b) R = 809	%				
$ \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$.00	³	Inffifi	huud	4-4 - ۳	0	A A		-		
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $.0.04	4⊦			d d d d d						
$ \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$		tens	2			ensit						
0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =		д 0.02				- II -8		alles A	ويتعاد المالية			
= -0.4 - 0.2 - 0.2 - 0.4 - 0.2 - 0.4 - 0.2 - 0.4 - 0.00 - 1008		(0	<u></u>		-9			1066 1069			
$ \begin{array}{c} 0.06 \\ (10) \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0$		-1	0.4 -0.2	Time /μs	0.2 0.4		1000 10 W	avelengtl	1000 100a n /nm	>		
$ \begin{pmatrix} 0.06 \\ 0.04 \\ 0.02 \\ -0.4 \\ -0.2 \\ 0.04 \\ -0.4 \\ -0.2 \\ 0.04 \\ -0.2 \\ -0.4 \\ -0.4 \\ -0.2 \\ -0.4$		0.0	(c) R = 40	%		-3	$\frac{1}{(d)R=409}$	6				
$ \begin{array}{c} \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		0.00 G		mini		g4		\wedge		_		
$\begin{array}{c} \begin{array}{c} \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $		0.0 (a.n	4			dI dI dI				_		
		insity	2-			ensit	0					
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} 0\\ -0.4 \\ -0.2 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.00 \\ 0.02 \\ 0.00 \\ 0.$		Inte				-8 II			Math Alfred Mark			
$= 0.4 - 0.2 \text{ from } \mu \text{s}$ $= 0.4 - 0.2 \text{ from } \mu \text{s}$		_	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	<u>.</u>		-9		62 1064		2		
$ \begin{array}{c} \begin{array}{c} 0.06 \\ (m) \\ 0.04 \\ 0.02 \\ -0.4 \\ -0.2 \\ 0.02 \\ -0.4 \\ -0.2 \\ 0 \\ -0.4 \\ -0.2 \\ 0 \\ -0$			0.4 -0.2	Time /µs	0.2 0.4		1000 104 W	avelength	n /nm	<u>,</u>		
$\begin{array}{c} 0.06\\ \hline 0.04\\ \hline 0.02\\ -0.4\\ -0.2\\ \hline 0.02\\ -0.4\\ -0.2\\ \hline 0.02\\ -0.4\\ -0.2\\ \hline 0.02\\ -0.4\\ \hline 0.02\\ 0\\ -0.4\\ \hline 0.02\\ \hline 0\\ \hline$		0.04	(e) <i>R</i> =10	%		-3	(f) R = 109	δ Δ		7		
$\begin{array}{c} \begin{array}{c} \begin{array}{c} 0.04 \\ 0.02 \\ -0.4 \end{array} \\ -0.4 \end{array} \\ -0.2 \end{array} \\ \begin{array}{c} 0.05 \\ 0.02 \\ -0.4 \end{array} \\ \begin{array}{c} 0.05 \\ 0.03 \\ 0.02 \\ 0 \end{array} \\ \begin{array}{c} 0.05 \\ 0.04 \\ 0 \end{array} \\ \begin{array}{c} 0.05 \\ 0.03 \\ 0.02 \\ 0 \end{array} \\ \begin{array}{c} 0.05 \\ 0.03 \\ 0.02 \\ 0 \end{array} \\ \begin{array}{c} 0.05 \\ 0.03 \\ 0.02 \\ 0 \end{array} \\ \begin{array}{c} 0.05 \\ 0.03 \\ 0.02 \\ 0 \end{array} \\ \begin{array}{c} 0.05 \\ 0.03 \\ 0.02 \\ 0 \end{array} \\ \begin{array}{c} 0.05 \\ 0.03 \\ 0.02 \\ 0 \end{array} \\ \begin{array}{c} 0.05 \\ 0.03 \\ 0.02 \\ 0 \end{array} \\ \begin{array}{c} 0.05 \\ 0.03 \\ 0.02 \\ 0 \end{array} \\ \begin{array}{c} 0.05 \\ 0.03 \\ 0.02 \\ 0 \end{array} \\ \begin{array}{c} 0.05 \\ 0.03 \\ 0.02 \\ 0 \end{array} \\ \begin{array}{c} 0.05 \\ 0.03 \\ 0.02 \\ 0 \end{array} \\ \begin{array}{c} 0.05 \\ 0.03 \\ 0.02 \\ 0 \end{array} \\ \begin{array}{c} 0.05 \\ 0 \\ 0 \end{array} \\ \begin{array}{c} 0.05 \\ 0 \\ 0 \\ 0 \end{array} \\ \begin{array}{c} 0.05 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \\ \begin{array}{c} 0.05 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \\ \begin{array}{c} 0.05 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \\ \begin{array}{c} 0.05 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		0.00 ټ				ug ⁴						
$ \begin{array}{c} \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \end{array} \right) \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \\ & & & \\ & & & \\ \end{array} \\ \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \\ & & & \\ & & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \\ & & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \\ & & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array}$		0.0 <mark>(</mark> 3-1	1			ty_6						
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \bigg{)} \end{array} \\ \bigg{)} \bigg{)} \bigg{)} \bigg{)} \bigg{)} \\ \bigg{)}		insity	2			tensi	ю ио			_		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Inte				ч –8		and the second	and had a set	**		
$\begin{array}{c} 0.17 0.12 0.11 0.12 0.11 1000 1002 1004 1000 1000 \\ \hline \text{Wavelength /nm} \\ \hline 0.05 \\ \hline 0.04 \\ \hline 0.03 \\ \hline 0.02 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0 \\ \hline 0$		(0 - 02	Ó	02 04	-8	0 1060 10	62 1064	1066 106	8		
$\begin{array}{c} 0.05 \\ \hline (g) \\ 0.04 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0 \\ 0.01 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			0.4 -0.2	Time /µs	0.2 0.4		1000 10 W	avelengt	h /nm	0		
$ \begin{array}{c} $				0.05	(g)							
$\begin{array}{c} \overrightarrow{\mathbf{U}} & 0.03 \\ \overrightarrow{\mathbf{U}} & 0.02 \\ \overrightarrow{\mathbf{U}} & 0.01 \\ 0 \\ -0.01 \\ -0.01 \\ 5 \end{array} \xrightarrow{\mathbf{U}} & 0 \\ \overrightarrow{\mathbf{U}} & 0 \\ -0.01 \\ -0.01 \\ 5 \end{array} \xrightarrow{\mathbf{U}} & 0 \\ \overrightarrow{\mathbf{U}} & \overrightarrow{\mathbf{U}} \\ \overrightarrow{\mathbf{U}} \\ \overrightarrow{\mathbf{U}} & \overrightarrow{\mathbf{U}} \\ \overrightarrow{\mathbf{U}} & \overrightarrow{\mathbf{U}} \\ \overrightarrow{\mathbf{U}} \\ \overrightarrow{\mathbf{U}} & \overrightarrow{\mathbf{U}} \\ \overrightarrow{\mathbf{U}} & \overrightarrow{\mathbf{U}} \\ \overrightarrow{\mathbf{U}} \overrightarrow{\mathbf{U}} \overrightarrow{\mathbf{U}} \\ \overrightarrow{\mathbf{U}} $				ਹ.03 ਜ 0.04		Λ						
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $				<u>ප</u> 0.03	-							
$\begin{bmatrix} 0.01 \\ 0 \\ -0.01 \\ 5 \\ \hline 0 \\ 5 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ 5 \\ \hline 0 \\ \hline 0 \\ 5 \\ \hline 0 \\ \hline$.002 GUSI	n.	-1						
$-0.01 \underbrace{ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 \end{bmatrix}}_{5} \underbrace{ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 5 \end{bmatrix}}_{1} \underbrace{ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 5 \end{bmatrix}}_{5} $				<u></u> 百 0.01	n.		A.A.A.					
				01	- Marily Contraction	and and	W W W	· V				
				-0.01	5	0 Time /n	s	5				

图 2 光纤光栅反射率对 SESAM 锁模激光器输出特性的影响。(a),(c),(e)不同反射率光纤光栅对应的时域输出; (b),(d),(f)不同反射率光纤光栅对应的频域输出;(g)单脉冲形状

Fig. 2 Influence of the reflectivity of the FBG on the output characteristics of the SESAM mode-locked laser. (a), (c), (e) Time domain outputs with different FBG's reflectivities; (b), (d), (f) frequency domain outputs with different FBG's reflectivities; (g) single pulse shape 光栅对应激光器的时域输出,通过对比可知激光器 输出脉冲的稳定性随着光纤光栅反射率的降低逐渐 提高。这是由于光纤光栅的反射率越高,激光器内 的相对损耗越小,在相同增益下谐振腔内可以起振 的模式越多,模式之间的竞争越激烈,从而导致输出 脉冲振幅的波动范围越大。图 2(b)、(d)、(f)分别 为三种光纤光栅对应激光器的频域输出,由于三种 光纤光栅的3 dB反射带宽和中心波长相同,导致对 应激光器输出脉冲的光谱形状几乎没有变化,只是 光谱强度随着光纤光栅反射率的降低逐渐增强。反 射带宽对脉冲宽度的影响比较小,利用自相关仪 (FR-103XL,Femotchrome)对激光器在上述三种不 同反射率光纤光栅下的输出脉冲宽度进行测量,脉 宽保持在 20 ps 附近,波动较小,如图 2(g)所示。

综上所述,在相同激光器腔体结构下,依次对比 研究了三种反射带宽相同、反射率 R 分别为 80%、 40%和 10%的光纤光栅对 SESAM 被动锁模激光 器输出脉冲特性的影响,三组实验结果表明所用光 纤光栅的反射率较高时,对应激光器输出脉冲的平 均功率较小,激光器能够实现稳定工作时对应 976 nm抽运源的工作电流范围较窄,并且时域上输 出脉冲的稳定性较差。通过对比,选择反射率为 10%的光纤光栅比较合适。

3 光纤光栅反射带宽对 SESAM 锁模 激光器输出脉冲特性的影响

经前面分析可知,光纤光栅反射率为10%时比 较有利于激光器的稳定工作,在此基础上,为了对比 研究光纤光栅反射带宽对 SESAM 被动锁模激光器 输出脉冲特性的影响,依次把两款反射率均为 10%、反射带宽 B_R 分别为0.3 nm 和 8.4 nm 的光 纤光栅接入激光器中,实验装置和测试方法与图 1 相同,得出了两种光纤光栅对应激光器在稳定工作 时输出脉冲的平均功率,结果由表4给出。通过对 比可知,反射带宽为8.4 nm 的光纤光栅对应输出 脉冲的平均功率更高一些。这是由于掺镱光纤的转 换效率较高,发射谱比较宽,反射带宽为8.4 nm 的 光纤光栅能够使谐振腔内更多的模式起振,从而在 相同抽运功率下能够从增益介质中提取出更多的能 量,导致激光器输出脉冲的平均功率更高。

表 4 光纤光栅反射带宽对 SESAM 锁模激光器平均输出功率的影响

Table 4	Influence of the band	dwidth of the FBG or	n the average output	power of the SES	AM mode-locked laser
Table T	influence of the band	awitatin of the r bo of	ii the average output	power or the one	in moue focked faser

	Current /mA	200	205	210	215	220	225	230	235	240	245
Output nomen /mW	$B_{\rm R} = 0.3 \rm nm$	5.09	5.56	6.09	6.55	7.02	7.48	7.92	8.48	8.93	9.47
Output power / m w	$B_{\rm R} = 8.4 \rm nm$	6.88	7.49	8.00	8.51	9.17	9.74	10.38	10.90	11.47	12.10

图 3 给出了两种光纤光栅在激光器稳定工作时 对应的时域和频域输出。时域上,对比图 3(a)、(c) 可知,反射带宽为 0.3 nm 的光纤光栅与反射带宽 为 8.4 nm 的光纤光栅输出脉冲序列在时域上的稳 定性比较接近。频域上,图 3(b)中脉冲的 3 dB 光 谱宽度为0.3 nm,与光纤光栅的反射带宽相同;图3 (d)中输出脉冲的 3 dB 光谱宽度为 1 nm, 与光纤光 栅 8.4 nm 的反射带宽差别较大。这是由于 0.3 nm 的反射带宽相对掺镱光纤的辐射谱而言比较窄,增 益光纤提供的增益能够满足该光谱范围内的模式, 导致激光器输出脉冲的光谱宽度与光纤光栅的反射 带宽相同。8.4 nm的反射带宽相对比较宽,增益光 纤提供的增益无法满足该光谱范围内的所有模式, 部分增益较大的模式能够起振,增益较小的模式在 增益竞争中被抑制,导致激光器输出脉冲的光谱宽 度只有1 nm。由掺镱光纤的辐射截面分布^[12]可知, 对于反射带宽为 8.4 nm(1060~1068 nm)的光纤光 栅而言,位于1060 nm 附近的模式比位于1068 nm 附近的模式具有更大的增益,模式之间的竞争结果 是前者起振,后者在竞争中被抑制掉。从图3(d)中 可以看出在1061~1068 nm 范围内有一定的光谱 成分存在,只是相对信号光而言强度非常微弱,相当 于噪声。光纤光栅反射带宽对激光器输出脉冲的脉 宽影响同样比较小,两种不同反射带宽的光纤光栅 对应输出脉冲的脉宽比较接近,均为20 ps。

综上所述,在相同的激光器腔体结构下,依次对 比分析了两种具有相同反射率、不同反射带宽的光 纤光栅对 SESAM 锁模激光器输出脉冲特性的影 响。实验结果表明反射带宽为 8.4 nm 的光纤光栅 相对反射带宽为 0.3 nm 的光纤光栅而言,对应输 出脉冲的平均功率较高,但脉冲在频域上的噪声较 大,不利于后续的放大,通过对比选择反射带宽为 0.3 nm 的光纤光栅比较合适。

图 3 光纤光栅反射带宽对 SESAM 锁模激光器输出特性的影响。(a),(c) 不同带宽光纤光栅对应的时域输出; (b),(d) 不同带宽光纤光栅对应的频域输出

Fig. 3 Influence of the bandwidth of the FBG on the output characteristics of the SESAM mode-locked laser. (a), (c) Time domain outputs with different FBG's bandwidths; (b),(d) frequency domain outputs with different FBG's bandwidths

4 SESAM 参数对激光器输出脉冲特性的影响

SESAM 的几项主要宏观特性参数有调制深度、饱和通量、恢复时间以及非饱和损耗等^[13-15]。 本节将研究 SESAM 的几项宏观特性参数对锁模激 光器输出脉冲特性的影响,两种 SESAM 的具体型 号和参数如表 5 所示。

实验装置与测试方法与图1相同,光纤光栅的反

射率和反射带宽分别为 10%和 0.3 nm,依次把两款 SESAM 接入激光器中,表 6 给出了两种 SESAM 对 应激光器的输出平均功率。通过对比分析可知,光纤 激光器对 SESAM 参数的适用范围比较大,两种 SESAM 在激光器能够稳定工作时对应 976 nm 抽运 源的工作电流比较接近,由于两种 SESAM 的非饱和 损耗差别较大,导致在相同抽运功率下,非饱和损耗 较小的 SESAM 对应输出脉冲的平均功率更高一些。

表 5 两种不同 SESAM 的具体参数 Table 5 Details of two different SESAMs

SESAM type	Modulation	Non-saturable	Saturation	Relaxation		
	depth / ½	loss / ½	fluence $/(\mu J/cm^2)$	time /fs		
SAM-1064-45-25.6 s-500 fs	30	15	30	500		
SAM-1064-70-25.6 s-500 fs	40	30	40	500		

表 6 SESAM 参数对锁模激光器平均输出功率的影响

Table 6 Influence of the parameters of the SESAM on the average output power

	Working current /mA	190	200	210	220	230	240	250	260
O to to to to to the W	SAM-1064-45-25.6 s-500 fs	4.32	5.36	6.31	7.43	8.42	9.39	10.42	11.39
Output power / mW	SAM-1064-70-25.6 s-500 fs	3.54	4.54	5.48	6.44	7.42	8.35	9.33	10.31

图 4 显示的是两种 SESAM 在激光器稳定锁模 时对应的时域和频域输出,时域上,图 4(a)和(c)比较 接近,脉冲稳定性比较好,表明光纤激光器对 SESAM 参数的适用范围比较大;频域上,由于采用相同的光 纤光栅,所以图 4(b)和(d)中的 3 dB 光谱宽度相同, 均为 0.3 nm。调制深度为 30%的 SESAM 对应输出 脉冲的脉宽为 22 ps,调制深度为 40%的 SESAM 对 应输出脉冲的脉宽为 20 ps,这是因为 SESAM 的调制 深度对脉宽具有较大影响,调制深度越大,输出脉冲 的脉宽越窄,实验结果与理论相吻合^[5]。 中 国 激 光

图 4 SESAM 参数对锁模激光器输出(a),(c)时域特性及(b),(d)频域特性的影响

1102002.

Fig. 4 Influence of the parameters of the SESAM on (a), (c) time domain and (b), (d) frequency domain output characteristics of the mode-locked laser

综上所述,在相同的激光器腔体结构下,依次对 比分析了两种 SESAM 的不同参数对激光器输出脉 冲特性的影响。实验结果表明光纤激光器对 SESAM 参数的适用范围比较大,SESAM 的非饱和 损耗越小,对应输出脉冲的平均功率越高,在实验中 应尽可能选择非饱和损耗比较小的 SESAM。

5 结 论

基于线形腔搭建了 SESAM 被动锁模皮秒脉冲 光纤激光器,对比研究了所用光纤光栅的反射率、反 射带宽以及 SESAM 的不同宏观特性参数对激光器 输出脉冲特性的影响。实验结果表明,所用光纤光 栅的反射率为 10%、反射带宽为 0.3 nm 时比较有 利于激光器的稳定锁模,光纤激光器对 SESAM 宏 观特性参数的适用范围比较大,SESAM 的非饱和 损耗对激光器输出脉冲的平均功率影响较大,实验 中应尽可能选择非饱和损耗比较小的 SESAM。

参考文献

- 1 U Keller, D Miller, G D Boyd, et al.. Solid-state low-loss intracavity saturable absorber for Nd : YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber[J]. Opt Lett, 1992, 17(7): 505-507.
- 2 U Keller. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950): 831-838.
- 3 Zhang Haiou, Cui Xuelong, Xu Jinlong, *et al.*. CW mode-locked Yb: NaY (WO₄)₂ femtosecond laser with a semiconductor saturable absorber mirror[J]. Chinese J Lasers, 2012, 39(11):

张海鸥,崔雪龙,徐金龙,等. 基于半导体可饱和吸收镜锁模的 Yb: NaY (WO₄)₂ 飞秒激光器[J]. 中国激光, 2012, 39(11): 1102002.

4 Song Rui, Chen Shengping, Hou Jing, et al.. Ultra-low repetition rate all-normal-dispersion passively mode-locked fiber laser based on SESAM [J]. High Power Laser and Particle Beams, 2011, 23(9): 2315-2318.

宋 锐,陈胜平,侯 静,等.超低频率全正色散半导体可饱和 吸收镜被动锁模光纤激光器[J].强激光与粒子束,2011,23(9): 2315-2318.

- 5 U Keller, K J Weingarten, F X Kartner, *et al.*. Semiconductor saturable absorber mirrors (SESAM' s) for femtosecond to nanosecond pulse generation in solid-state lasers[J]. IEEE J Sel Top Quant Electron, 1996, 2(3): 435-453.
- 6 R Song, J Hou, S Chen, et al., 157 W all-fiber high-power picosecond laser[J]. Appl Opt, 2012, 51(13), 2497-2500.
- 7 Song Rui, Chen Shengping, Hou Jing, et al.. All-fiber pulsed laser with narrow line width[J]. Chinese J Lasers, 2011, 38(5): 0502002.

宋 锐,陈胜平,侯 静,等.全光纤窄线宽脉冲激光器[J].中 国激光,2011,38(5):0502002.

- 8 X Tian, M Tang, X Cheng, *et al.*. High-energy wave-breakingfree pulse from allfiber mode-locked laser system [J]. Opt Express, 2009, 17(9): 7222-7227.
- 9 X Tian, M Tang, P P Shum, *et al.*. High-energy laser pulse with a submegahertz repetition rate from a passively mode-locked fiber laser[J]. Opt Lett, 2009, 34(9): 1432-1434.

10 Liu Shirao, Chen Shengping, Song Rui, et al.. Three modelocking states in all-normal dispersion fiber laser at low repetition [J]. Chinese J Lasers, 2012, 39(s1): s102007.
刘诗尧,陈胜平,宋 锐,等. 低重复频率全正色散脉冲光纤激光器的三种锁模状态[J]. 中国激光, 2012, 39(s1): s102007.

- 11 Liu Jiang, Wang Pu. 2 μm thulium-doped ultrafast all-fiber laser with watts-level average output power[J]. Chinese J Lasers, 2012, 39(8): 0802004.
 - 刘 江,王 璞. 瓦级输出全光纤结构 2.0 µm 掺铥皮秒脉冲光

纤激光器[J]. 中国激光, 2012, 39(8): 0802004.

- 12 H M Pask, R J Carman, D C Hanna, et al.. Ytterbium-doped silica fiber lasers: versatile sources for the 1~1.2 μm region[J]. IEEE J Sel Top Quant Electron, 1995, 1(1): 2-13.
- 13 F X Kurtner, J A der Au, U Keller. Mode-locking with slow and fast saturable absorbers-what's the difference[J]. IEEE J Sel Top Quant Electron, 1998, 4(2): 159-168.
- 14 O Shtyrina, M Fedoruk, S Turitsyn, *et al.*. Evolution and stability of pulse regimes in SESAM-mode-locked femtosecond fiber lasers[J]. J Opt Soc Am B, 2009, 26(2): 346-352.
- 15 J C Wang, C K Sun, J K Wang. Nonlinear pulse-shaping phenomena of semiconductor saturable absorber mirror[J]. Appl Phys Lett, 2006, 89(23): 231106.

栏目编辑:史 敏

七芯光子晶体光纤实现高功率白光超连续谱输出

多芯光子晶体光纤便于与抽运激光器的大模场 直径输出尾纤进行低损耗的熔接,能够把高功率的抽 运激光耦合进光子晶体光纤中。同时,多芯光子晶体 光纤的光场分布直径比单芯光子晶体光纤大,尽管激 发非线性效应所需的激光抽运功率会有所提升,但是 其激光损伤阈值也随之提升,即能够承受更高功率的 抽运激光。因而,多芯光子晶体光纤非常适合用于构 建全光纤化的高功率超连续谱光源系统。

最近,国防科学技术大学采用高功率皮秒光纤 激光抽运由光纤光缆制备技术国家重点实验室拉制 的七芯光子晶体光纤,实现了 64.2 W 全光纤化白 光超连续谱输出,如图 1 所示。实验所用七芯光子 晶体光纤的外径为 127 μm。包层空气孔按照六边 形双包层结构排布,其中内包层是6圈圆形空气孔, 空气孔直径为1.45 μm,空气孔间距为2.45 μm;外 包层是一圈椭圆型大空气孔,空气孔的长轴为 3.10 μm,短轴为2.25 μm。数值计算得到该七芯 光子晶体光纤同相模的零色散波长为1014 nm。通 过采用光子晶体光纤后处理技术,实现了抽运激光 系统输出尾纤与七芯光子晶体光纤的低损耗熔接。 在110 W的皮秒光纤激光抽运下,实现了64.2 W 超连续谱输出,光-光转换效率为58%,超连续光谱 范围为500~1700 nm 以上。目前,该超连续谱光 源的输出功率仅受限于抽运激光功率。通过合理的 结构设计,基于多芯光子晶体光纤有望获得平均功 率更高、光谱更优化的超连续谱。

图 1 (a) 超连续谱光源的输出功率特性; (b) 最高输出功率下超连续谱; (c) 七芯光子晶体光纤的端面结构图 Fig. 1 (a) Output power profile of supercontinuum source; (b) supercontinuum at the maximum output power; (c) structure of seven-core photonic crystal fiber

谌鸿伟¹ 韦会峰² 刘 通¹ 周旋风¹ 陈子伦¹ 陈胜平¹ 侯 静^{1*} 陆启生¹

 (¹ 国防科学技术大学光电科学与工程学院,湖南长沙410073
 ² 光纤光缆制备技术国家重点实验室,长飞光纤光缆有限公司研发中心,湖北武汉430073
 *E-mail: houjing25@sina.com
 收稿日期: 2013-11-20;收到修改稿日期: 2013-11-26